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Treatment of CpS22Fe2S4 (Cp
S2 = 1,3-C5H3(SiMe3)2) with

[CpRu(MeCN)3]
þ in acetonitrile at room temperature led to the

formation of an incomplete cubane-type cluster [(CpS2Fe)2-
(CpRu)S4]

þ (1). Further treatment of 1 with [Cp0Ru(MeCN)3]
þ

(Cp0 = Cp, Cp�) produced [(CpS2Fe)2(CpRu)(Cp
0Ru)S4]

2þ.
Cluster 1 reacted with DMAD to give the 1:1 adduct through for-
mation of three sulfur–carbon bonds.

Dinuclear transition-metal sulfido complexes of the type
Cp02M2S4 (Cp

0 = Cp and substituted Cp) have been recognized
as useful building blocks for the rational synthesis of transition
metal sulfido clusters,1 which are important because of their po-
tential use for the biological and industrial catalytic processes.2

Our research has focused on the cluster construction starting
from Cp02Fe2S4.

3 Reactions of Cp�2Fe2S4 with iron and rutheni-
um carbonyls gave closo-(Cp�Fe)2M(CO)3(�3-S)2 clusters.3a

In the reaction with [Cp�Ru(MeCN)3](PF6), cubane-type
[Cp�4Fe2Ru2S4](PF6)2 was formed. Introduction of bulkier
CpS2 ligands (CpS2 = 1,3-C5H3(SiMe3)2) onto the iron centers
allowed the isolation of the intermediate, [(CpS2Fe)2-
(Cp�Ru)S4](PF6).

3b Existence of three bulky substituted Cp li-
gands, however, led to the poor reactivity of the cluster. This pa-
per describes the synthesis and structure of sterically less crowd-
ed [(CpS2Fe)2(CpRu)S4]

þ, and the reactions of this trinuclear
cluster with [Cp0Ru(MeCN)3]

þ (Cp0 = Cp, Cp�) or an alkyne
molecule resulting in cluster core expansion.

An acetonitrile solution of CpS22Fe2S4 and 1 equiv. of
[CpRu(MeCN)3](TFPB) (TFPB = tetrakis{3,5-bis(trifluorome-
thyl)phenyl}borate) was stirred for 2 h at room temperature
(Scheme 1). Volatiles were removed under reduced pressure
and recrystallization of the residue from CH2Cl2/hexane at
�10 �C gave dark brown crystals of [(CpS2Fe)2(CpRu)S4]-
(TFPB) (1) in 74% yield.4 ORTEP drawing of the cationic part
in 1 is depicted in Figure 1.5 The structural feature of 1 resembles
that of [(CpS2Fe)2(Cp

�Ru)S4](PF6) we previously reported.3b

Thus, the cluster possesses an Fe2Ru core with �3-�
1:�2:�2

and �3-�
1:�1:�2 disulfido groups. The bond lengths of Ru–

Fe1 (2.7627(6) �A) and Ru–Fe2 (2.7791(6) �A) are in the normal
range expected for the ruthenium–iron single bonds. The dis-
tance between two iron atoms is 3.4814(7), indicating the ab-
sence of a direct bond between them. Cluster 1 can be best de-
scribed as a ‘‘CpRu’’-fragment-capped ‘‘CpS22Fe2S4’’, in
which the ‘‘CpS22Fe2S4’’ fragment is bound to the ruthenium
center in �5(Fe1,Fe2,S1,S3,S4) fashion. Rauchfuss et al. report-
ed formation of [Cp�3Ru3S4](PF6) by the reaction of Cp

�
2Ru2S4

with [Cp�Ru(MeCN)3](PF6), of which the SO2 adduct has been
characterized by X-ray diffraction study.6

Cluster 1 can be considered as an incomplete cubane-type
Fe2RuS4 cluster, which could provide a direct route to the cu-

bane-type cluster through incorporation of one metal fragment.7

The thermal reaction of 1 with [CpRu(MeCN)3](TFPB) in ace-
tonitrile was carried out at 70 �C for 6 h (Scheme 1). Volatiles
were removed under reduced pressure and recrystallization of
the residue from CH2Cl2/hexane at �10 �C afforded a dark
brown solid of [(CpS2Fe)2(CpRu)2S4](TFPB)2 (2) in 65% yield.8

The results of the elemental analysis and mass spectrum are in
good agreement with the formula of 2. We have not been able
to make single crystals of 2 suitable for X-ray diffraction study.

Thermolysis of 1 and bulkier [Cp�Ru(MeCN)3](PF6) under
the slightly severer conditions (75 �C, 7 h), followed by treat-
ment with NH4PF6, gave [(CpS2Fe)2(CpRu)(Cp

�Ru)S4](PF6)2
(3) in 25% yield (Scheme 1).9 Recrystallization of the evaporat-
ed reaction mixture residue from acetonitrile/diethyl ether gave
single crystals suitable for X-ray diffraction study. An ORTEP
drawing of the cationic part in 3 is depicted in Figure 1.5 Com-
plex 3 has an Fe2Ru2S4 cubane-type core with Cp, Cp

�, and two
CpS2 ligands. The Fe2Ru2 core is distorted from the ideal tetra-
hedral structure. The distances of Ru1–Ru2 (2.8206(11) �A),
Ru1–Fe1 (2.7313(16) �A), and Ru2–Fe2 (2.7452(17) �A) indicate
the presence of each metal–metal single bond, while the dis-
tances of Ru1–Fe2 (3.3889(17) �A), Ru2–Fe1 (3.3884(16) �A),
and Fe1–Fe2 (3.4154(19) �A) indicate no bond between them. As-
suming that one �3-sulfido ligand donates four electrons to the
core, cluster 3 can be recognized as a 66e species. This electron
count is consistent with the existence of three metal–metal bonds
as an electron-precise cluster. Compound 3 is the first Fe2Ru2S4
cubane-type cluster that is X-ray characterized.

We succeeded in the synthesis of the transition-metal sulfido
cubane-type cluster 3 having three different metal fragments, by
means of the stepwise incorporation of two different metal frag-
ments into CpS22Fe2S4. Such a synthetic methodology has not
been well established.10 In 1995, Kunchen and his co-workers
succeeded for the first time in the stepwise construction of the
Mo2WCuS4 cubane-type clusters by reacting Mo2S4(R2PS2)2
with W(CO)3(MeCN)3 and then with CuI.10a Hidai et al. nicely
developed this method and synthesized a variety of cubane-type
heterometallic sulfido clusters.10b

Heating an acetonitrile solution of 2 with dimethyl acety-
lenedicarboxylate (DMAD) at 75 �C for 5 h led to quantitative
formation of 4 (Eq 1). Recrystallization of the evaporated
reaction mixture residue from diethyl ether/hexane at �10 �C
afforded dark brown crystals of 4 in 88% yield.11 The results
of elemental analysis and mass spectrum indicate that cluster 4
makes the adduct with DMAD in the ratio of 1:1.

Shibahara et al. reported the reaction of an incomplete cu-
bane-type cluster [Mo3(�3-S)(�-S)3(H2O)9]

4þ with acetylene
to form the adduct [Mo3(�3-S)(�-S)(�3-S2C2H2)]

4þ.12 The al-
kenedithiolate ligand bridges over two molybdenum atoms sym-
metrically, in which the two molybdenum centers and the pro-
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tons of the alkenedithiolate ligand are both chemically equiva-
lent. However, this is not the case for cluster 4. The 1H signals
of the SiMe3 groups on the CpS2 ligands were observed at �
0.41, 0.46, 0.53, and 0.58, indicating the presence of two chemi-
cally inequivalent, chiral iron centers. Accordingly, the 1H sig-
nals of two methyl groups on the DMAD fragment were ob-
served independently at � 3.30 and 3.89.

The structure of 4 was unequivocally determined by X-ray
diffraction study (Figure 1).5 Cluster 1 makes an adduct with
one molecule of DMAD which bridges over Ru, S1, S2, and
S4 atoms, in which two sulfur–sulfur bonds and two rutheni-
um–iron bonds were cleaved as a result of the incorporation of
DMAD: The distances of S1–C2, S2–C1, and S4–C2 are
1.883(10), 1.692(7), and 1.971(9) �A, respectively, indicating
the formation of three carbon–sulfur bonds. The formation of
the ruthenium–carbon bond is evident from the distance of
Ru–C1 (2.091(8) �A). The distance of Fe1–Fe2 (2.6524(11) �A)
is in the normal range expected for the single iron–iron bonds,
whereas the distances of Ru–Fe1 (3.5005(10) �A) and Ru–Fe2
(3.4597(10) �A) indicate the absence of the ruthenium–iron bond.
The carbon–carbon distance in the alkenedithiolate ligand is
1.460(10), which is closer to that of ethane (1.54 �A) than to that
of ethene (1.33 �A).

In conclusion, we achieved the stepwise construction of
Fe2RuS4 (1) and Fe2Ru2S4 (2) clusters by the reaction of
CpS22Fe2S4 with [CpRu(MeCN)3]

þ. Further treatment of the

incomplete cubane-type cluster 1 with [Cp�Ru(MeCN)3]
þ gave

a cubane-type cluster 3with three different metal fragments. One
molecule of DMAD was incorporated into 1 to form 4 with an
unprecedented core.
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Figure 1. ORTEP drawings of 1, 3, and 4. Thermal ellipsoids are shown at the 30% probability level. The counter anion and hydrogen
atoms were omitted for clarity. In 4, CpS2 and Cp ligands were also omitted.
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